Your browser doesn't support javascript.
節目: 20 | 50 | 100
结果 1 - 7 de 7
过滤器
添加過濾器

年份範圍
1.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23290814

摘要

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the Interferon paradox previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


主题 s
COVID-19 , Inflammation
2.
biorxiv; 2022.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512884

摘要

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOC) have been identified, many of which share recurrent mutations in the spike protein's receptor binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we show that immunosuppressed patients with hematologic cancers develop distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. Furthermore, we provide the first evidence for a viral reservoir based on intra-host phylogenetics. Our results on viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable as well as an alternative explanation for some long-COVID cases. Our findings also highlight that protracted infections should be treated with combination therapies rather than by a single mAbs to clear pre-existing resistant mutations.


主题 s
Neoplasms
3.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

摘要

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


主题 s
COVID-19
4.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.03.18.21253907

摘要

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.


主题 s
Lung Diseases , Drug-Related Side Effects and Adverse Reactions , Death , COVID-19
5.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.427846

摘要

SARS-CoV-2 mutations can impact infectivity, viral load, and overall morbidity/mortality during infection. In this analysis, we look at the mutational landscape of the SARS-CoV-2 receptor binding domain, a structure that is antigenic and allows for viral binding to the host. We analyze 104193 GISAID sequences acquired on October 15th, 2020 with a majority of sequences (96%) containing point mutations. We report high frequency mutations with improved binding affinity to ACE2 including S477N, N439K, V367F, and N501Y and address the potential impact of RBD mutations on antibody binding. The high frequency S477N mutation is present in 6.7% of all SARS-CoV-2 sequences, co-occurs with D614G, and is currently present in 14 countries. To address RBD-antibody interactions we take a subset of human derived antibodies and define their interacting residues using PDBsum. Our analysis shows that adaptive immunity against SARS-CoV-2 enlists broad coverage of the RBD suggesting that antibody mediated immunity should be sufficient to resolve infection in the presence of RBD point mutations that conserve structure.

6.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.428097

摘要

Functional and lasting immune responses to the novel coronavirus (SARS-CoV-2) are currently under intense investigation as antibody titers in plasma have been shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we sought to determine the presence of SARS-CoV-2-specific memory B cells in COVID-19 convalescent patients. In this study, we report on the evolution of the overall humoral immune responses on 101 blood samples obtained from 32 COVID-19 convalescent patients between 16 and 233 days post-symptom onset. Our observations indicate that anti-Spike and anti-RBD IgM in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity in convalescent plasma declines rapidly compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which increase over time, and the number of IgG+ memory B cells which remain stable thereafter for up to 8 months after symptoms onset. With the recent approval of highly effective vaccines for COVID-19, data on the persistence of immune responses are of central importance. Even though overall circulating SARS-CoV-2 Spike-specific antibodies contract over time during convalescence, we demonstrate that RBD-specific B cells increase and persist up to 8 months post symptom onset. We also observe modest increases in RBD-specific IgG+ memory B cells and importantly, detectable IgG and sustained Fc-effector activity in plasma over the 8-month period. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for the prevention of secondary infections, vaccine efficacy and herd immunity against COVID-19.


主题 s
COVID-19
7.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20212092

摘要

Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to confounding and reverse causation. We began by identifying the genetic determinants of 955 circulating proteins in up to 10,708 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphisms near the gene encoded by the circulating protein. We then undertook an MR study to estimate the effect of these proteins on COVID-19 susceptibility and severity using the Host Genetics Initiative. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 2,972 cases / 284,472 controls; OR = 0.48, P = 7x10-8), COVID-19 hospitalization (N = 6,492 / 1,012,809; OR = 0.60, P = 2x10-7) and COVID-19 susceptibility (N = 17,607 / 1,345,334; OR = 0.81, P = 6x10-5). Results were consistent despite multiple sensitivity analyses probing MR assumptions. OAS1 is an interferon-stimulated gene that promotes viral RNA degradation. Other potentially implicated proteins included IL10RB. Available medicines, such as interferon-beta-1b, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.


主题 s
COVID-19 , Death
搜索明细